N(2) - N(1) - C(4) - C(3)	10.6 (2)
N(1) - C(4) - C(3) - C(2)	-12.6 (2)
N(1) - N(2) - C(2) - C(3)	-6.0 (2)
Phenyl rings	
C(3) - C(4) - C(11) - C(12)	-72.0(3)
C(3)—C(4)—C(11) C(16)	103.1 (2)
C(5) - C(17) - C(18) - C(23)	-155.5 (2)
C(5)-C(17)-C(18)-C(19)	21.7 (4)

The structure was solved by direct methods (Gilmore, 1984) and successive Fourier syntheses. Refinement was performed by full-matrix least-squares methods. Non-H atoms were refined anisotropically. All H atoms were found from difference maps, atoms H(1)–H(11) and H(15) (total of 12 atoms) were refined with fixed isotropic displacement parameters (1.2 $\times B_{eq}$ of the parent atom), but the other H atoms were not refined.

Data collection: Rigaku AFC-5S software (Rigaku Corporation, 1988). Cell refinement: TEXSAN (Molecular Structure Corporation, 1989). Data reduction: TEXSAN. Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: WINDOWS 3.1.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1081). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bilgin, A. A., Yeşilada, A., Palaska, E. & Sunal, R. (1992). Arzneim Forsch/Drug Res. 42(2), 1271-1273.
- Ergin, Ö., Sillanpää, R. & Ezer, N. (1993). Acta Cryst. C49, 42-44.
- Foye, W. O. (1989). In Principles of Medicinal Chemistry. Philadel-
- phia: Lea & Febiger.
- Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- Hassner, A. & Michelson, M. J. (1992). J. Org. Chem. 27, 3974-3976.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Lóránd, T., Szabó, D., Földesi, A., Párkányi, L., Kálmán, A. & Neszmélyi, A. (1985). J. Chem. Soc. Perkin Trans 1, pp. 481–486.
- Molecular Structure Corporation (1989). TEXSAN. TEXRAY Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Rigaku Corporation (1988). AFC-5S/MSC. Data Collection and Refinement Software. Rigaku Corporation, Tokyo, Japan.

Acta Cryst. (1996). C52, 1772-1774

1-Benzoyl-3-(4-methoxyphenyl)thiourea

YANG CAO, BO ZHAO, YAN-QIU ZHANG AND DE-CHUN ZHANG*

Department of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China

(Received 20 December 1995; accepted 9 February 1996)

Abstract

In the title molecule, $C_{15}H_{14}N_2O_2S$, there is an intramolecular N—H···O hydrogen bond of 2.618 (4) Å between an amide N atom and the benzoyl O atom, which completes a nearly planar six-membered ring in the central part of the molecule. The benzene rings of the benzoyl and methoxyphenyl groups make dihedral angles of 28.8 (4) and 44.2 (4)°, respectively, with this plane. In the crystal, the molecules are packed in a centrosymmetric manner through weak N—H···S interactions.

Comment

During our systematic search for non-linear optical organic crystals having short cut-off wavelengths, we isolated the title compound, 1-benzoyl-3-(4-methoxy-phenyl)thiourea, (I).

Since we have no access to the Cambridge Structural Database (Allen et al., 1979), a search of Chemical Abstracts was carried out on compounds of type $R-C_6H_4-CO-NH-CS-NH-C_6H_4-R'$. One similar determination, with R = Cl and R' = H, was found (Simonov, Pobedimskaya, Martin & Masia, 1988), and there are no significant geometrical differences between that and the present determination. An intramolecular hydrogen bond [N1-H7···O1 2.618(4) Å] completes an almost planar six-membered ring with the C1, N2 and C8 atoms: the maximum deviation from the best plane through the five non-H atoms is 0.014(6) Å and the distance of the S atom from this plane is 0.0905 (2) Å. Weak intermolecular interactions were also found; N2—H13···Sⁱ 3.507 (3), C7—H5···Sⁱ 3.363 (3), C15— H1...O1ⁱⁱ 3.387 (6) and C11—H12...O1ⁱⁱⁱ 3.424 (4) Å [symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 - x, 1 - y, -z; (iii) 1-x, 1-y, 1-z]. All these interactions play a role in the centrosymmetric packing. From the last two hydrogen-bonding distances, weak intermolecular hydrogen bonding between the benzoyl O atom and $H-C_{sp^2}$ could be assumed (Taylor & Kennard, 1982; Berkovitch-Yellin & Leiserowitz, 1984; Krishnamohan Sharma & Desiraju, 1994).

Refinement

SI

01 02

N1 N2

C1 C2 C3 C4 C5

C6 C7

C8

C9 C10

C11

C12

C13 C14 C15

Refinement on F R = 0.0330 wR = 0.0480 S = 1.5101261 reflections 234 parameters H-atom parameters added theoretically and refined isotropically $h = 0 \rightarrow 9$ $k = -14 \rightarrow 14$ $l = -5 \rightarrow 5$ 3 standard reflections monitored every 200

> reflections intensity decay: 0.19%

Weighting scheme based
on measured e.s.d.'s;
$w = 1/[\sigma^2(F)]$
$(\Delta/\sigma)_{\rm max} = 0.029$
$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: none
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$$

х	у	Z	U_{eq}
0.3664 (2)	0.0982 (2)	0.3330(2)	0.0623
0.7228 (2)	0.2996 (2)	0.6307 (4)	0.0743
0.1447 (3)	0.4653 (2)	0.2896 (4)	0.0851
0.5032 (3)	0.2709 (2)	0.3339 (5)	0.0542
0.5946 (2)	0.1559 (2)	0.5878 (4)	0.0455
0.7021 (3)	0.2145 (2)	0.6926(5)	0.0511
0.7925 (3)	0.1710(2)	0.8818 (5)	0.0473
0.9271 (4)	0.2050 (3)	0.9101 (7)	0.0630
1.0145 (4)	0.1690(3)	1.0887 (7)	0.0746
0.9695 (4)	0.0989 (3)	1.2396 (7)	0.0715
0.8367 (4)	0.0651 (3)	1.2119 (6)	0.0634
0.7475 (4)	0.1003 (2)	1.0339 (5)	0.0523
0.4921 (3)	0.1803 (2)	0.4153 (5)	0.0448
0.4094 (3)	0.3186(2)	0.1725(5)	0.0484
0.3759 (4)	0.4149 (2)	0.2388 (7)	0.0648
0.2886 (4)	0.4668 (3)	0.0880(7)	0.0694
0.2340 (3)	0.4220(2)	-0.1300 (5)	0.0585
0.2688 (4)	0.3258 (2)	-0.1984 (6)	0.0628
0.3559 (4)	0.2747 (3)	-0.0477 (6)	0.0577
0.1114 (6)	0.5667 (3)	-0.2290(1)	0.0945

[able 2. Selected geometric parameters (Å, °)

S1C8	1.659 (3)	C3C4	1.374 (5)
DIC1	1.231 (4)	C4—C5	1.374 (5)
D2C12	1.363 (4)	C5C6	1.365 (5)
D2C15	1.438 (5)	C6—C7	1.380 (5)
N1—C8	1.329 (4)	C9-C10	1.381 (4)
N1C9	1.425 (4)	C9C14	1.370 (4)
N2-C1	1.376 (4)	C10-C11	1.383 (5)
N2C8	1.392 (4)	C11C12	1.367 (5)
C1C2	1.476 (4)	C12C13	1.386 (4)
C2C3	1.386 (4)	C13C14	1.375 (4)
C2—C7	1.383 (4)		
C12—O2—C15	117.1 (3)	\$1—C8—N1	125.4 (2)
C8—N1—C9	127.9 (3)	S1C8N2	119.2 (2)
C1—N2—C8	128.7 (3)	N1	115.4 (3)
DI-CI-N2	121.5 (3)	N1-C9-C10	117.8 (3)
DI-CI-C2	121.2 (3)	N1-C9-C14	123.1 (3)
N2—C1—C2	117.3 (3)	O2-C12-C11	124.6 (3)
C1—C2—C3	117.9 (3)	O2-C12-C13	115.8 (3)
C1—C2—C7	122.8 (3)		

Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.

Experimental

The synthesis of the title compound was carried out by adding 6 ml benzoyl chloride to a solution of 6 g KSCN in 50 ml dry acetone. After removal of the residue, the filtrate was added to a solution of 6 g p-methoxyaniline in 50 ml dry acetone and the resulting solution stirred at 333 K for 2 h. Recrystallization was carried out three times from acetone.

Crystal data

$C_{15}H_{14}N_2O_2S$ $M_r = 286.35$ Triclinic $P\overline{1}$ $a = 9.835 (1) \text{ Å}$ $b = 13.484 (1) \text{ Å}$ $c = 5.440 (1) \text{ Å}$ $\alpha = 93.51 (1)^{\circ}$ $\beta = 93.68 (1)^{\circ}$ $\gamma = 91.462 (10)^{\circ}$ $V = 718.3 (2) \text{ Å}^{3}$	Mo $K\alpha$ radiation $\lambda = 0.7107$ Å Cell parameters from 25 reflections $\theta = 23.26-26.56^{\circ}$ $\mu = 0.228 \text{ mm}^{-1}$ T = 293 K Prismatic $0.30 \times 0.20 \times 0.20 \text{ mm}$ Colorless	Table 2. Se S1C8 O1C1 O2C12 O2C15 N1C8 N1C9 N2C1 N2C8 C1C2 C2C3 C2C7
Z = 2 $D_x = 1.324 \text{ Mg m}^{-3}$ $D_m \text{ not measured}$ $Data \ collection$ Rigaku AFC-7 <i>R</i> diffractom- eter	$R_{\rm int} = 0.010$ $\theta_{\rm max} = 22.50^{\circ}$	C12O2C15 C8N1C9 C1N2C8 O1C1N2 O1C1C2 C1C2C3 C1C2C7

The structure of (I) was solved by direct methods (*SAP19*1; Fan, 1991) and expanded using Fourier techniques (Beurskens *et al.*, 1992). The weighting scheme was based on counting statistics and included a factor P = 0.03 to downweight the intense reflections. *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1988) was used for data collection and cell refinement and *TEXSAN* (Molecular Structure refinement and the preparation of material for publication.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1222). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D., Rodgers, J. R. & Watson, D. G. (1979). *Acta Cryst.* B35, 2331–2339.
- Berkovitch-Yellin, Z. & Leiserowitz, L. (1984). Acta Cryst. B40, 159-165.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Fan, H.-F. (1991). SAP191. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
- Krishnamohan Sharma, C. V. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345–2352.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Simonov, A. D. M., Pobedimskaya, E., Martin, A. & Masia, M. (1988). Kristallografiya, 33, 102–108.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

Acta Cryst. (1996). C52, 1774-1776

Bandrowski's Base

Alexander J. Blake, Peter Hubberstey and Daniel J. Quinlan

Department of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England. E-mail: a.j.blake@nott.ac.uk

(Received 5 February 1996; accepted 4 March 1996)

Abstract

Molecules of N, N''-(2,5-diamino-2,5-cyclohexadiene-1,4diylidene)bis(1,4-benzenediamine), $C_{18}H_{18}N_6$, lie across crystallographic inversion centres. The angle between the central ring and each of the terminal rings is $60.2 (5)^{\circ}$. Hydrogen bonding links molecules into chains along **b**.

Comment

Although first prepared over a century ago (Bandrowski, 1889) the title compound, (1), has been little studied. It is generally prepared by oxidation of 1,4-phenylenediamine with either $K_3[Fe(CN)_6]$ (Bandrowski, 1889; Bandrowski, 1894; Ritter & Schmitz, 1929) or H₂O₂ (e.g. Corbett, 1972; Rice, 1962), although nitrobenzene has also been used as the oxidizing agent (Crippa, Bellani & Marubini, 1930). It has also been observed as a product of cerruloplasmin oxidation of 1,4-phenylenediamine under in vitro enzymic conditions (Rice, 1962; Fan & Wang, 1984). We obtained a crystalline sample of (1) as a side product (see below) of an attempt to produce 1,4-bis(2-cyanoguanidinyl)benzene following the method described for the preparation of N-aryl-2-cyanoguanidines (Cunningham, Wan & Cox, 1994). The molecular structure of (1) was determined from early chemical studies (Green, 1913; Ritter & Schmitz, 1929; Lauer & Sunde, 1939; Sunde & Lauer, 1952) and from a determination of its formation mechanism (from 1,4-phenylenediamine via condensation of a quinonediimine intermediate; Corbett, 1972). Little is known of its chemistry; treatment with either acid or base results in decomposition to 1,4-phenylenediamine (Cox & Lewin, 1935; Feigl & Costa Neto, 1956).

Molecules of (1) lie across crystallographic inversion centres (Fig. 1) and the central ring is therefore ideally planar. The angle between central and terminal rings is $60.2(5)^{\circ}$ and the two terminal rings are coplanar by symmetry. Comparison with the published structure of N, N'-(2, 5-cyclohexadiene-1, 4-diylidene)bis(2naphthalenamine), (2) (Povet'eva, Chetkina & Kopilov, 1980) shows general similarities in the central N, N'-(2,5cyclohexadiene-1,4-diylidene) moiety: the C=N double bonds are almost identical in length [1.298(6) Å in (1) and 1.293 and 1.296 Å for the two independent half-molecules in (2)]. The C=C double bond length of 1.361 (7) Å in (1) is longer than in (2) where values of 1.322 and 1.326 Å are found; we attribute both this and the greater disparity between the C-C single bond lengths in (1) [1.432(7) and 1.485(6) Å] to the